ON PASSING
FROM SINGULAR TO PLURAL CONSEQUENCES

Kosta Dosen

IRIT, University of Toulouse III
118 Route de Narbonne, 31062 Toulouse cedex, France

Mathematical Institute, Knez Mihailova 35
P.O. Box 367, 11001 Belgrade, Yugoslavia



ON PASSING FROM SINGULAR TO PLURAL CONSEQUENCES

Abstract. In the early 1970s, Dana Scott proved a theorem characterizing the minimal and maximal
multiple-conclusion consequence relations (here called plural) that extend conservatively a
consequence relation based on the usual (singular) notion. This paper analyzes and develops this
result. First, it gives analogous, more symmetrical, results concerning extensions of preorders.
Since the compactness property of the consequence relations is not presupposed, various infinitary
forms of cut are envisaged. Next, a theorem generalizing Scott’s is proved for consequence relations
that need not be compact. Some variants of this theorem hold also for consequence relations where
structural rules are restricted.

§0. Introduction. Let us call a consequence relation singular if, as usual, it holds
between sets of formulae, understood as premises, and single formulae, understood as
conclusions. The connection between I'F A, i.e. the assertion that the formula A is a
consequence of the set of formulae I', and Tarski’s consequence operation Cn is provided

by the equivalence
(1 I'FA & Ae Cn(D).

What is sometimes called single-conclusion consequence relations covers not only singular
consequence relations, but also relations that may hold between a set of formulae and the
empty set; i.e., we may have I'+ &, too. This slightly more general notion, embodied in
Gentzen’s sequents for intuitionistic logic, may be needed in some contexts, but is not so
important for us here: we eschew some not very essential technical epicycles if we require
that we always have a formula on the right-hand side of + (cf. the remark after Theorem 3
at the end of §3). Anyway, in many usual logical systems we have a formula, like the
constant absurd proposition, that may replace the empty set on the right-hand side of F.

A plural consequence relation holds between two sets of formulae. Such consequence
relations, sometimes called multiple-conclusion, underlie Gentzen’s sequents for classical
logic (but there are multiple-conclusion sequent formulations of intuitionistic logic, too).
The interpretation of plural consequence relations in terms of natural deduction is somewhat
problematic (though a whole book [Shoesmith & Smiley 1978] and several later papers are
devoted to this matter). However, semantically, a plural consequence relation makes perfect
sense when we understand it as holding between premises taken conjunctively and’
conclusions taken disjunctively. It embodies the Boolean dualities of classical logic, and
underlies Gentzen’s neat formalization of this logic. (We shall not deal here with plural
consequence relations where both premises and conclusions are taken conjunctively. In
principle, this is nothing but a handy notation for matters pertaining to singular consequence
relations.)



To pass from a plural consequence relation IF to its singular mate F, we define F by the
obvious equivalence

2 F'tA o TIH{A}.

On the other hand, it is less obvious what plural consequence relations may correspond to a
given singular consequence relation. In Theorem 1.2 of [1974, p. 415] Scott gave a
characterization of the minimal and maximal plural consequence relations that extend
conservatively a given singular consequence relation (i.e., they agree with the singular
consequence relation in the sense of (2)). A version of this theorem with an alternative
characterization of Scott’s maximal plural consequence relation may be found in [Gabbay
1981, chapter 1.1, Theorem 13, p. 8]. Here we prove a few theorems extending Scott’s
result in more than one direction.

First, we consider passing from preorders, which are primitive consequence relations,
singular on both sides, to singular or plural consequence relations. We prove in this context
theorems analogous to Scott’s, characterizing the minimal and maximal singular or plural
consequence relations that extend conservatively a given preorder. This enables us to exhibit
some symmetries hidden beneath Scott’s characterization, which should make clearer its
meaning.

The minimal plural consequence relation I extending conservatively a singular
consequence relation F is obtained by defining I'lF A as I' F B for some B in A; for the
minimal IF extending a preorder <, we define I'lF A as A< B for some A in I" and some B in
A. The characterization of the maximal IF extending F boils down to understanding I"IF A as
I'F VA, where VA is a disjunction of the formulae in A; for the maximal IF extending <, we
understand I"'IF A as AI'S VA, where AT is a conjunction of the formulae in I'. We shall
see that the difference between these characterizations of the minimal and maximal relations
IF reduces essentially to the order of quantifiers.

Next, in our approach, the sets of formulae I"'and AinI'F A and I"IF A (and hence also
the conjunctions and disjunctions we have just mentioned) need not be finite. On the other
hand, in Scott’s approach one finds built-in the usual assumption that consequence relations,
both singular and plural, are compact. This means that for singular consequence relations
one has

TtA = @I <) is finite & T' FA).

For plural consequence relations, Scott assumes compactness simply by defining them as
relations between finite sets of formulae. Indeed, most authors seem to estimate that
Gentzen’s sequents make sense only with finite collections of formulae on the two sides of
the turnstile. However, noncompact consequence relations arise in second-order or higher-
order logic, in logic with infinitary connectives, in arithmetic with the w-rule, or whenever



finite axiomatizability fails, and we may use sequents to talk about such consequence
relations.

We shall show that compactness is not essential for proving results of which Scott’s
theorem is a particular case, or analogous results involving preorders. This requires
envisaging various infinitary forms of cut, involving infinitely many applications of ordinary
cut rules. Nevertheless, our results apply also to compact consequence relations, where cut
appears in its ordinary finite form. In the compact case, we only lose some of the
distinctions we shall draw, which permit us to formulate the more general results.

Shoesmith and Smiley in [1978, chapters 1, 2, 5] treat systematically of many matters
related to this paper, and, in particular, in [1978, section 5.1, pp. 73-75] they envisage
generalizing Scott’s result to noncompact consequence relations. However, for their notion
of plural consequence relation, =t rewaev than ours (see §2 below), there is not always a
maximal plural consequence relation that extends conservatively a given singular
consequence relation.

Finally, the style of our exposition will differ somewhat from Scott’s in disregarding
Tarski’s Cn operation. Of course, the connection with Cn may be easily found via
equivalence (1) (or, as in [Scott 1974, Proposition 1.1, p. 415], a variant of (1) where
compactness is built-in). But it seems that sequents provide a more perspicuous language,
not only for proving things Gentzen introduced them for.

We follow Scott in concentrating on notions of consequence relation appropriate for
classical and intuitionistic logic. If similar results can be proved for consequence relations of
other logics — for example, substructural logics, where the structural rules of thinning,
contraction or permutation may be missing — we shall deal with them in more detail on
another occasion. However, at the very end we have some results about extending
conservatively singular consequence relations for which thinning, and also contraction and
permutation, on the left need not hold.

§1. From preorders to singular consequence relations. Let L be a nonempty set

of objects called formulae. We shall deal only with structural rules involving sequents built

with the formulae of L. So, it does not matter what particular expressions we have in the

language L: it can be a completely arbitrary nonempty set. We shall use the metavariables

A, B, C, ..., possibly with indices, for members of L, and T, A, O, ..., possibly with
indices, for arbitrary (empty, finite or infinite) subsets of L. By P(L) we denote the power

set of L.

A preorder on L is, as usual, a subset < of L X L that satisfies

=0 C<(C,
(<2 A<C = (C<B = A<B).



Note that (< 1) and (< 2) could be replaced by either of the equivalences

A<C & VB(C<B = A<B),
C<B & VAA<C = A<B),

whose left-to-right directions are (< 2). The other directions amount to (< 1). (Assuming
the right-toeft implication of the first equivalence we obtain (< 1) by putting C for A; we
obtain this implication from (< 1) by instantiating B by C. We proceed quite analogously
with the second equivalence.) Hence reflexivity (< 1) and transitivity (<2), which is a
primitive form of cut, may be conceived as converse to each other.

A singular consequence relation on L is a subset F of P(L) X L that satisfies

F1) {C}FC,
(F2) (VCe ©)T1+C = (OUIRFB = UL FB).

The reflexivity postulate (F 1) is familiar from Gentzen’s sequent systems, whereas (F 2)
embodies cut and thinning on the left. The cut of (F 2) does not cover only the ordinary
form of cut, where O in (F 2) is a singleton (this singleton cut yields all instances of (& 2)
where O is nonempty and finite): it covers also cases where © is infinite. For © empty,
(VCe ©)TI'1 F Cis true for every I'1, and hence (F 2) yields thinning on the left:

(F3) InFB = TI'iulLFB.

Our notion of singular consequence relation is equivalent to the notion of single-conclusion
consequence relation of [Shoesmith & Smiley 1978, section 1.1, p. 15].
We can replace (F 1) and (F 2) by either of the equivalences

(VCeO)T1FC & VILVB(OUILFB = T'MUILFB),
QUILFB & VI (VCe®)I1FC = Il +B),

whose left-to-right directions are (F 2). The other directions amount to (+ 1) in the presence
of (F 3). So, the reflexivity postulate and cut may be conceived as converse to each other.
Another alternative is to replace (& 1) and (F 2) by

(+179 (VCe ®)OFC,
(+2Y (VCe®O)THFC = (OFB = T'FB).

It is clear that (F 1) yields (F 1') with the help of (+ 3), and that (F 2) yields (F 2') by taking
I'; empty. For the converse, we obtain (F 1) from (F 1') by taking © a singleton. To obtain
(F 2), let us first deduce (F 3) from (F 1') and (F 2'). As an instance of (F 1') we have
(VCeT1ulp) I'ulilFC, and hence (VCe I'y) I'{uIz F C; then from I'y F B, with the
help of (F 2'), we obtain I'yuI F B. Now for (F 2), suppose (VCe ©) I'1 F C. With (F 3)
we derive (VCe OuUI») I'uly t C, which with @ UT» F B and (F 2') yields 'l F B.



Still another alternative is to replace (F 1) and (F 2) by the equivalence
VCe®)I'tC & VB(OGFB = I'tB),

whose left-to-right direction is (+ 2'). The other direction amounts to (F 1').

Starting from a given singular consequence relation F, we may define A<B as {A} } B,
and check in a straightforward way that the relation < so defined is a preorder. Conversely,
starting from a given preorder <, we define the relations

ItminB =¢f (JA€T)A<B,
I'tmax B =¢f VE(VAeINDE<A = E<B).

We are primarily interested in these definitions for preorders <, but we may envisage them
for any relation < € LXL. (For example, in Theorem 1(ii) below, we assume that < is only

reflexive.)
If for our preorder < it holds that for some formula denoted 6%_ AT, for every
E,
(A) (WVAeDE<A © ESAT,

then the definition of Fp,« yields the equivalence
IFmaxB & AC<B.
We usually have AT for every finite I': it is the conjunction of the formulae in I" if I is
nonempty, and the constant true proposition if I" is empty. For infinite I', we may use
universal quantification or infinite conjunctions. Algebraically, AT is like the infimum of the
set I" (it is unique if < is antisymmetric).
Let us note that for < a preorder we can derive
TrpinB © (JAeNVE(E<A = E<B),
whereas for I nonempty we derive (classically, but not intuitionistically)
I'tmaxB < VEJAeT)(E<A = E<B).
We have the following theorem:

Theorem 1. (i) If < is a preorder, then Fpin and Fpax are singular consequence relations.
(i) If £ < LxL isreflexive and F € P(L) X L satisfies (F 2), then
VA,B(A<B & {A}FB) if and only if Fpin © F S Frax-
Proof. (1) That Fpjp and Fpax satisfy (F 1) is trivial. For (F 2), suppose (Inin) (VCe ©)

I'1 Foin € and () OUT2 Fpin B. From (IIgi,) we obtain that for some De OuUI) we
have D<B. If D e I'y, we obtain immediately I'y Ul Fppin B. If D€ O, then from (Imin)



we obtain that for some Ae I'j we have A<D. Then, by (< 2), we get A<B, from which
I'yuI Fhin B follows. Hence (F 2) holds for Fpin.

Suppose now (Imax) (VCe ©) I'1 Fpax C and (IIjpax) O U2 Fpax B. If (VA e IMuly)
E<A, then from (Igax) We obtain (VCe®) E<C, and from (II,2x) we obtain
(VCe ©) ESC = E<B, which yields EXB. Hence (F 2) holds for Fpax.

(ii — only if part) If I"Fpip B, then for some Ae I we have A<B, and hence {A} F B.
By (F 3) (which is an instance of (F 2)), we obtain I'FB. So, Fpjn S F. Suppose now
I'tB. If (VAeT) E<A, then (VAeT) {E}FA, and by (F 2), we obtain {E} FB. This
yields E<B, and so, F € Fpax.

(ii — if part) If A<B, then we get immediately {A} Fyin B, and hence {A}+B. If
{A} F B, then {A} Fpax B, which yields A < B with the help of (< 1) (this is the only place
in the proof of (ii) where we need the reflexivity of <). g.e.d.

From this theorem it follows that the set of all singular consequence relations that extend
conservatively a given preorder coincides with the set of all singular consequence relations in
the interval between ki and Frpax. This set is nonempty, because Fpin € Fpax (Which
follows from the transitivity of <), and we can substitute Fpin and Fpax for F in (ii).

§2. From preorders to plural consequence relations. A plural consequence
relation on L is a subset IF of P(L) X P(L) that satisfies

(- 1) {C}I{C},
(F2.1#) (VCe®)TF{C} = (OuUIzlFA; = UL IFAY),
(F2.2#) (VCe®){C}IAy = (T1FA;UO = TyFAJUAY).

For © empty, (IF 2.1 #) and (IF 2.2 #) yield respectively thinning on the left and on the right:
(I 3.1) Ay = TyUTL Ik Ay, '
(F 3.2) T1FA; = TylFAUA,.

We can replace (IF 1), (IF 2.1 #) and (IF 2.2 #) either by the two equivalences
(VCeO)T'1IF{C} & VI, A(OUIhiFA; = THUlLkFA)),
(VCe©){C}IFAy & VI, AiT1FAjUB = T IFAJUAY),

or by the two equivalences
OUILIFA) © VTII((VCe®O)T1H{C} = THulhlFAjy),
IMiFAjUB & VA (VCe©){ClIFAy = T IFA1UA)).
Other alternatives are to use either the following four assumptions

(VCe ©)OIF{C},
(VCe©){C}IO,



(VCeO)TH{C} = (OIFA = TIFA),
(VCe ©){C}FA = (TFO = TIFA),

or the two equivalences

(VCe®O)TI{C} © VAOIFA = TIFA),
(VCe®){C}IFA & VI(THFO = TIFA).

Starting from a given plural consequence relation IF, we may define A<B as
{A} IF { B}, and check in a straightforward way that the relation < so defined is a preorder.
Conversely, starting from a given preorder <, we define the relations

TlhpinA =¢f (3Ae I)(3FBe A)A<B,
Thpax A =4 VE,F(VAe T)E<A & (VBe A)B<F) = E<F).

These definitions may also be envisaged for any relation < € L XL, and not only preorders
<

If for our preorder < it holds that for some formula AI" we have for every E the
equivalence (A), mentioned above, and for some formula VA, for every F,

(V) (VBe A)B<F & VALF,
then the definition of IFnax yields the equivalence
IMNFpaxA & ATSVA.

We usually have VA for every finite A: it is the disjunction of the formulae in A if A is
nonempty, and the constant absurd proposition if A is empty. For infinite A, we may use
existential quantification or infinite disjunctions. Algebraically, VA is like the supremum of
the set A (it is unique if < is antisymmetric). '
Let us note that for < a preorder we can derive

I'FninA © AeN@E@ABeA)VE,F(E<A & B<F) = E<F),
whereas for I" and A nonempty we derive (classically, but not intuitionistically)

I'knaxA & VE,F(3AeT)(IBe A)(E<A & B<F) = E<F).

Let us also note that for A a singleton we obtain the equivalences

[Clhnin (B} & (JAeT)A<B,
Iknax {B} © VE(VAeT)E<A = E<B),

which correspond exactly to the definitions of Fpj, and Fyax in §1.
Consider now the following generalizations of (IF 2.1 #) and (IF 2.2 #):

(IF2.1) VCeO)T'1IFAJU{C} = (BUILZIFA) = THulzIFATUAY),
(- 2.2) (VCe ®©) {ClulnFAy = (T IFAjLUO = THUIZIFATUA)).
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We obtain (IF 2.1 #) from (IF 2.1) by taking A empty, and (I 2.2 #) from (IF 2.2) by taking
I', empty. Note that for © a singleton (IF 2.1) and (IF 2.2) boil down to the same plural
form of cut. This singleton cut implies all the instances of (IF 2.1) and (IF 2.2) where O is
nonempty and finite. Hence these two principles are equivalent when © is nonempty and
finite. They also boil down to the same thing when © is empty: in this case, either of
(IF 2.1) and (IF 2.2) yields thinning on both the left and right, i.e. both (IF 3.1) and (IF 3.2).
So, (IF 2.1) and (IF 2.2) can be distinguished only when O is infinite.

The principles (IF 2.1) and (IF 2.2) may be found in [Shoesmith & Smiley 1978, section
2.1, p. 32]. However, the cut principle embodied in the notion of multiple-conclusion
consequence relation of that work is still more general. It says that if for every partition
(©1, Oy) of © we have O1UT'IFAUBO,, thenT'IFA.

Note that (IF 1), (IF 2.1) and (IF 2.2) amount to the two equivalences

VCeO)T1IFAJU{C} & VI, A(OUILIFA; = THUlZIFAJUA)),
(VCe ©){Cluln kA & VI, AT IFAjUO = T1UlZFATUA)),

or to the two equivalences

OUIhFA & VIM,A1(VCe®O)T1IFAjU{C} = THulh Ik AjUA)Y),

I IFA1UO & VI, A2((VCe O) {CIulRIFAy = THUlIFAJUA)R).
Note also that (IF 2.1) and (IF 2.2) may follow from (IF 2.1 #) and (I 2.2 #) if in L we have
connectives that, like classical negation, enable us to transport formulae from one side of a

sequent to the other, yielding an equivalent sequent.
We can easily prove the following lemma:

Lemma 1. If < € LxL is transitive, then IFp;, satisfies (IF 2.1) and (IF 2.2).

With the help of this lemma, and by imitating the proof of Theorem 1, we obtain the
following theorem:

Theorem 2. (i) If <is a preorder, then I, and IFp,« are plural consequence relations.
(i) If £ c LxL is reflexive and IF € P(L) X P(L) satisfies (IF 2.1 #) and (IF 2.2 #),
then

VA,B(A<B < {A}F {B}) if and only if Fmpin IF S Fpay.
Note that to prove (IF 1) for IFpax in (i) we use the transitivity of <. To show that "-ma,;

in (i) need not satisfy (IF 2.1) and (IF 2.2), let L be {1,a, b, c, 0} with < the lattice
ordering of the nondistributive lattice



0

and take I'y =T = {a}, A = A2 = {b} and © = {c}.
It follows from Theorem 2 that the set of all plural consequence relations that extend

conservatively a given preorder coincides with the set of all plural consequence relations in
the interval between IFpin and IFpax. This set is nonempty, because IFyin € Fpax (which
follows from the transitivity of <).

§3. From singular to plural consequence relations. Starting from a given plural
consequence relation IF, we may define I'F B as T" IF {B}, and check in a straightforward

way that the relation F so defined is a singular consequence relation (for that we use only

(IF 1) and (I 2.1 #)). Conversely, starting from a given singular conseqﬁence relation F, we
define the relations

I'FvinA =4 (3B A)THB,

I'kyaxA =q¢f VEVF(VBe A) {BJUEFF = TT'UEFF).
These definitions may also be envisaged for any relation F < P(L) X L, and not only singular
consequence relations F. They match exactly the characterization of A and F, in
[Shoesmith & Smiley 1978, section 5.1, p. 74].

If for our singular consequence F relation it holds that for some formula VA, for every
Zand every F,

(VBe A){BJUEFF & {VA}UEFF,
then our definition of IFy,x yields the equivalence -
r“’MAxA < I'FVA.

We usually have VA for every finite A: it is the disjunction of the formulae in A if A is

nonempty, and the constant absurd proposition if A is empty. For infinite A, we may use

existential quantification or infinite disjunctions. |
For Ikyax it is easy to derive, with the help of ( 3),

IkyaxA & (VE2D)VF(VBe A) {B)UEFF = EFF).

This last equivalence matches exactly Scott’s definition of the corresponding notion, and the
definition of IFyy above is also Scott’s [1974, Theorem 1.2, clauses (i) and (ii), p. 415].



Let us also note that, with the help of (F 1) and (F 2) (actually, (F 2 cut) of §4 below
would do instead of (F 2)), we can derive

IF'kynA & (ABe AVEVF({B}UEFF = TUEFF),
whereas for A nonempty we derive (classically, but not intuitionistically)
I'FyaxA & VEVFE@Be A)Y{B}UEFF = TUEFF).
We can also derive, with the help of (F 1') and (+ 2),
FkynA < 3Be AVELEVF((VAeDEIFA & {B}UErFF) = EjUEQ FF),
FyaxA © VE,EVF((VAeD)EFA & (VBe A) {B}UELFF) = EjUE  HF).
From these last two equivalences, for I nonempty we derive
FryinA <& 3Be AVELEVFEAeN)((E1FA & {BJUELFF) = E1UERHF),
while for I" and A nonempty we derive
IF'kyaxA & VE(,EVFEAeIN)(@ABe A)Y(E1FA & {B}UEFF) = EjUEQHF)

(in both cases we proceed classically, but not intuitionistically). The last six equivalences

should be compared with the definitions of Fpin, Frmax, Fmin and Fmax in §§1-2, and the

equivalences following these definitions, which are all based on the same underlying pattern.
We prove the following lemmata:

Lemma 2. If F ¢ P(L) XL satisfies (I 2), then Iy satisfies (IF 2.1) and (IF 2.2).

Proof. Suppose for (IF 2.1) that (I}) (VCe ©) I'1 IFyyn A1 U {C} and (I1) OUTI? v Ag.
If Ce O, then from (I;) we obtain either I'j By, for some Bi€ Ay, or I'1 F C. From the
first disjunct we derive I’y UI; F B] with the help of (F 3) (which is an instance of (F 2)).
If, however, there is no Ce © such that this first disjunct is true, then (VCe @) I'1FC. -
From this and (II1), with the help of (F 2), we derive I'yUI2 F B3 for some Bye Ap. This
proves that Ik satisfies (IF 2.1).

Suppose now for (IF 2.2) that (Ip) (VCe®) {C}ulhlrygywA2 and (II)
I'i FpvinA1UO. Then from (II2) we know that for some Bje Aju© we have I'1 F By, If
Bie Ay, we use (F 3). If B;e€ O, then, by (I2), we have for some Bpe Aj that
{B1}uUIaF By, This and I'1 F B yield I'y T, F By with the help of (F 2). This proves that
v satisfies (F 2.2). g.e.d. ‘

Lemma 3. If F < P(L) XL satisfies (I 2), then IFpax satisfies (IF 2.1 #) and (IF 2.2).

Proof. Suppose for (IF 2.1 #) that (I}) (VCe ©) I'1 byax {C} and (II}) OUT kpyax Az, If
(VBe Aj) {B}UEFF, then from (II}) we obtain OUIUZEFF. With (VCe ®) T+ C,



which follows from (I), this yields 'y Ul UE F F by using (F2). We have proved that
IFpmax satisfies (IF 2.1 #). (Note that this way we don’t obtain (IF 2.1) for IFpsx.)
Suppose now for (IF 2.2) that (I;) (VCe®) {C}ulzlkyaxAsz and (IIp)
I rpyaxA1U®. If WBeAjUAp) {B}UEFRF, then from (Ip) we obtain (VCe ©)
{C}uUIUEFF. With
(VBe ©) {B}UIQUEFF = T'TUILUELF,

which follows from (II), we obtain 'y U UEF F. (To derive from (II) the implication
we have displayed, we use (F 3) in order to obtain (VBe Ay) {B}UIRUEFF from
(VBe A1) {B}UEFF.) This proves that Iy ,x satisfies (IF 2.2). g.e.d.

That (IF 2.1) cannot replace (IF 2.1#) in Lemma 3 is shown by the following
counterexample (adapted from [Shoesmith & Smiley 1978, section 5.2, Theorem 5.7, p.
75]). Let L be infinite and let I' F B hold if and only if either I is infinite or Be I". This
relation F is a singular consequence relation, but with I'y =Ty =, A1 = Ay = {A}, ©
infinite and A¢ ©, the principle (IF 2.1) fails for IFpax.

This asymmetry of Lemma 3, which consists in having (IF 2.1 #) rather than (IF 2.1),
has perhaps something to do with the fact that (IF 2.1) is involved in the following
deduction. If © is the set of all instances of a formula A that are obtained by substituting a

constant term for the variable x, and B is a formula in which x does not occur free, then
from (VCe ©) {Vx(BVA)}IF{B,C} and O I+ {VxA} we may infer by using (IF 2.1) the
intuitionistically unacceptable sequent {Vx(BvA)} IF {B,VxA}.

To formulate the next theorem we need the following instance of (IF 2.2), where Aj is

empty:
(F2.25%) (VCe®) {CluIzFA) = (T1FO = THUIRZIFA)).

If we have (IF 1) and (IF 3.2), then we can derive (IF 2.2 #) from (IF 2.2 b ); if moreover we
have (IF 3.1), we can derive (IF 2.2) from (IF 2.2 b ). Since (IF 2.2 #) gives (IF 3.2) as an
instance, (IF 2.2 b ) and (IF 3.2) amount to (IF 2.2 b ) and (IF 2.2 #) in the presence of (IF 1).
For I'y empty, (IF 2.2 b ) coincides with (IF 2.2 #) where A; is empty. For © a singleton,

(I 2.2 b)) coincides with an instance of (IF 2.1 #); it yields all instances of (IF 2.1 #) where
O is nonempty and finite. Now we can give our theorem:

11



Theorem 3. (i) If F is a singular consequence relation, then Ik and IFysx are plural
consequence relations that satisfy (IF 2.2).

(ii) If F € P(L) X L satisfies (F 1) and IF < P(L) X P(L) satisfies (I 2.2 b ) and (I 3.2), then
VIVB(I'FB < T'IF{B}) if and only if Iy S IF S IFyax.

Proof. (i) Itis trivial to prove that IFyy and IFyax satisfy (IF 1). For the rest we apply
Lemmata 2 and 3.

(ii — only if part) If I' FyynA, then for some Be A we have I'F B, and hence
'k {B}. By (IF 3.2), we obtain I'lF A. So, IFyny S IF. Suppose now I'lFA. If (VBe A)

{B}UEFF, then (VBe A) {B}UZEIF {F}, and by (IF 2.2 b ), we obtain TUZ IF {F}. This
yields TUZF F, and so IF € IFpax.

(ii — if part) If I'F B, then we get immediately I" lFyyn {B}, and hence 'lF {B}. If
'l {B}, then I" IF\yax { B}, which yields I' F B with the help of (F 1) (this is the only place
in the proof of (ii) where we need (F 1)). g.e.d.

From this theorem it follows that the set of all plural consequence relations satisfying
(IF 2.2) that extend conservatively a given singular consequence relation coincides with the
set of all plural consequence relations satisfying (IF 2.2) in the interval between IFyy and
IFpmax. This set is nonempty, because Ikyy S IFyax (Which follows from (F 2)).

Had we dealt with single-conclusion consequence relations F mentioned in the
introduction, for which we may also have I' F &, then I IFy;;y A could be defined as
(3Be A)TFB or (A= &TFHA).

In the definition of IFy;sx, the variable F could range also over the empty set. All this
because in Theorem 3 we might wish to have on the left-hand side of the equivalence of (ii)-

VIVBI+FB & Tk {B}) & VIT+J < TkQ).

It is to eschew these things that we have preferred to stick to our notion of singular
consequence relation, which always has a formula on the right-hand side of F. However,
modulo such adjustments, our results would hold in the more general context, too (cf. the
parenthetical remark in the penultimate paragraph, below).

§4. Variants of Theorem 3. Let us now consider cases where + € P(L)XL is not

necessarily a singular consequence relation in our sense, but satisfies the weaker version of
(F 2) where O is a singleton, i.e. the ordinary cut principle

(F 2 cut) INrC = ({ClulkB = T'{ulzFB).
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Either of the equivalences

INFC & VILVB({C}UIZFB = T'ul+B),
{C}ULFB & VI FC = Uzt B)

amounts to (F 1) and (F 2 cut). It is clear that (F 2 cut) yields (b 2) for every nonempty finite
©. Note that (F 2 cut) suffices to show that Iy S Fpax.

Then, by going once again through the relevant parts of the proofs of Lemmata 2 and 3,
we can prove a variant of Theorem 3 where (i) is replaced by

(i) IfF < P(L)XL satisfies (F 1), (F 2 cut) and (F 3), then IFyn and Fpyax
satisfy (IF 1) and (IF 2.2).

Scott’s Theorem 1.2 of [1974, p. 415] is obtained from this variant of Theorem 3 by taking
that F is compact and that the relations I (i.e. those included in P(L)x P(L)) hold only
between finite sets of formulae. This is why he can replace (I 2.2) by the following plural
form of ordinary singleton cut:

TFAU(C} = ({CJUTIFA = TIA),

together with thinning on the left and right (in the presence of thinning on the left and right,
this cut amounts to (IF 2.2) with © a singleton, or a finite set). As we have remarked above,
(I 2.1) and (IF 2.2) cannot be distinguished for IF holding between finite sets of formulae.
So, for Scott, IFyy and IFyax in (i) are plural consequence relations in our sense. But, in
general, without the finiteness restriction, we need not have (IF 2.1 #), and hence neither
(IF 2.1), for IFyyn and IFpyax in (i'). (This is shown by the following counterexample,
adapted from [Shoesmith & Smiley 1978, section 1.1, Theorem 1.3, p. 18]): let L be
infinite and let ' F B hold if and only if either T is infinite or Be I" or B is not A, for a
chosen formula A; this relation F satisfies (F 1), (F 2 cut) and (F 3), but with I'; =T = &,
Ay = {A}, O infinite and A ¢ ©, the principle (IF 2.1 #) fails for IFyy and IFyax.) Of
course, compact relations F € P(L) X L that satisfy (F 2 cut) and (F 3) satisfy also (F 2), and
vice versa. So, for Scott, F in (i') is a singular consequence relation in our sense.

Note that to derive some of the equivalences giving alternative definitions of IFyy and
IFpax in §3 we have used the full power of (F 2), and not only its instances such as (F 2 cut)
or (F 3). In the absence of (F 2), these equivalences need not hold. However, (F 2 cut) and
(F 3) amount to (F 2) for compact relations F. Moreover, for the equivalence of our
definition of IFyax with Scott’s we need only (F 3).

In [1978, section 5.2, pp. 75-79] Shoesmith and Smiley investigate how one may
extend conservatively compact singular consequence relations to plural consequence
relations that need not be compact, i.e. that need not satisfy
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I'FA = @A c)@A' c AT is finite & A'is finite & T' IFA").

In particular, they give examples of such maximal plural coﬁ"’ferparts that need not be
compact. (The minimal plural counterparts of compact singular consequence relations are
always compact.) Scott’s lFyax, which is compact, need not coincide with the possibly
noncompact IFysx of the variant of Theorem 3 with (i'), but it can be characterized
completely analogously, the only difference being that it holds between finite sets. And our
proof of this variant of Theorem 3, where we never assume that the sets that enter into the
relations IF must be infinite (they only can be such), yields a proof of Scott’s theorem.

Let us mention still another variant of Theorem 3, where thinning on the left is not
assumed for F. In this variant, (i) of Theorem 3 is replaced by

(i) If F < P(L)XL satisfies (F 1) and (F 2 cut), then IFyy and IFyax satisfy
(F1),(F2.2b)and (IF 2.2 #).

The proof consists in another rehearsal of the relevant parts of the proofs of Lemmata 2 and
3. Actually, for the part involving IFyax, the relation F can be any relation included in
P(L) X L, not necessarily satisfying (F 1) and (F 2 cut). For IFyqy in (i") we can show that it
also satisfies (IF 2.1) where O is a singleton and I'; € I'q, and (IF 2.2) where I'; € I'y. Of

course, (IF 2.2 b ) and (IF 2.2 #) yield the principles (IF 2.2 b ) and (I 3.2) from (ii) of
Theorem 3. This variant of Theorem 3, with (i) replaced by (i"), can be adapted to sequents
I'F B and I IF A where I" and A are sequences of formulae (possibly transfinite) rather than

sets, and where thinning, contraction and permutation on the left are not presupposed for .
Let us note that if in (i") we replace (F 2 cut) by (F 2) where @ # O (s0, © can be finite

or infinite, but (F 3) is not guaranteed), then IFyyy and Ikyx will satisfy, of course, what
they satisfy in (i"), but they will satisfy moreover (IF 2.1 #) where © £ (the principle

(I 2.1 #) for © nonempty and finite follows from (IF 2.2 b)). The relation IFyyy will satisfy
also (IF 2.1) where ©®# & and I', € I'1, and as before, (IF 2.2) where I', € Ty.

For the relations IF of these last variants of Theorem 3 we have thinning on the right in
(IF 3.2). We also have the following special form of thinning on both the left and right,

obtained by taking ® empty in (IF 2.2 b ):

(F3.24) Mg = riulihkA,.

Otherwise, we don’t have thinning on the left for IF, as we don’t have it for F. (If we deal
with relations F that admit I F &, then for F in analogues of Theorem 3 we might need to
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assume a single-conclusion form of (IF 3.2 b ), with A a singleton or empty.) Of course, if

in "Ik A we require that A be always nonempty, we shall not have (IF 3.2 b ).

~ One may envisage other variants of our theorems, and in some of them one would need
definitions of minimal or maximal consequence relations different from those we have given.
For example, in a variant of Theorem 2, one may try to characterize the maximal plural
consequence relation that extends conservatively a given preorder and satisfies (IF 2.1) and
(I 2.2), rather than only (IF 2.1 #) and (IF 2.2 #). Provided that it exists. The minimal such
consequence relation is IFpyp, as stated in Lemma 1.
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